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The linear and global theories of stability of buoyancy-driven flows are reviewed, and 
corresponding eigenvalue problems whose eigenvalues give critical values of Rayleigh number 
are formulated in variational form. Penalty-finite element approximations of these problems 
are constructed. After a discussion of the properties of the solutions, the formulation is applied 
to the problem of stability of a container of fluid containing internal heat sources and heated 
from below. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

We are concerned here with the problem of determining the conditions under 
which solutions to problems of fluid flow are stable. The conditions we have in 
mind are upper bounds on one or more parameters of the system. More 
particularly, the problem under consideration is that of buoyancy-driven flow of 
viscous, incompressible heat-conducting fluids, and it is assumed that the 
Oberbeck-Boussinesq approximations applied to the Navier-Stokes equations give 
a reasonable model. Under these circumstances the parameter of interest is 
primarily the Rayleigh number, and we will accordingly seek bounds on the 
Rayleigh number. These bounds will appear as eigenvalues of appropriate eigen- 
value problems, and one of our aims is to formulate and implement the variational 
theory for these eigenvalue problems and to seek finite element approximations of 
the solutions. 

The problem has received much attention in the literature, the majority of 
investigations concentrating on analytical methods for determining critical values of 
Rayleigh number. The methods used can be divided conveniently into two 
categories: the linear theory of stability, due essentially to Poincare [16], and the 
energy or global theory of stability, due to Serrin [18, 191 for the Navier-Stokes 
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STABILITY OF FLUID MOTIONS 93 

equations, and extended by Joseph [lo, 111 and by Shir and Joseph [20] to the 
problem at hand. The linear theory gives sufficient conditions for instability, while 
the global theory gives sufficient conditions for stability. The two theories lead to 
two generally distinct eigenvalue problems, the least eigenvalues corresponding to 
the critical values of Rayleigh number. One problem for which the two theories 
coincide is the Benard problem, which has been extensively documented an 
discussed (see Chandrasekhar [4], Joseph [13]). This is the problem of stability of 
a stationary fluid layer heated from below; at a critical value of Rayleigh number 
the layer loses its stability and cellular motion sets in. 

Recently, Galdi and Straughan [7] have re-examined the connection between 
linear and global stability, and have applied their theory to the problem of gravity- 
dependent motion of a suspension of swimming micro-organisms. Another area in 
which linear and energy stability theory has found application is that 
magnetohydrodynamics; a recent contribution which includes a good review of t 
work in this area is that of Galdi [6]. 

In Section 2 we formulate the eigenvalue problems corresponding to the linear 
and global theories and derive variational statements of these problems. We pay full 
attention to the question of the choice of spaces in which solutions are sought and 
make use of techniques which are by now standard to derive variational eige~val~e 
problems. The well-known penalty method is used to remove the hydrostatic 
pressure as a variable, so that solutions are obtained, in effect, for fluids wit 
compressibility. 

Finite element approximations of the penalised problems are constructed and, 
after a discussion of the convergence of these approximations, numerical results are 
presented. We focus attention on the problem of a layer of fluid of finite extent, 
heated from below, with internal heat sources present. Existing analytical results for 
the Benard problem (no internal heat sources) assume either an unbounded domaio 
(Chandrasekhar [4], Sparrow, Goldstein, and Johnsson [21]) or a bounded 
domain with unrealistic boundary conditions on the horizontal surfaces (Hall and 
Walton [8]); numerical investigations by the finite element method have 
carried out for bounded domains by Jaekson and Winters [9], who use the me 
of parameter stepping and bifurcation search, and by Ciiffe and Winters [3], 
use an algorithm which locates symmetry-breaking bifurcation points. Our resuhs 
for the BCnard problem represent an extension of all of these results in that we are 
able to elucidate the behaviour of critical Rayfeigh number as a function of 
width-depth ratio for, a wide range of ratios and for a variety of boun 
conditions. Subsequently, we examine the situation for which internal heat sources 
give rise to a quadratic temperature distribution within the fluid. Global stabihty 
for this problem has been examined by Joseph and Shir [ 14 and linear stability 

y Sparrow et LIE. [Zl], for the case of an unbounded layer. 
ow the critical Rayleigh number varies, both with the intensi 

source and with the horizontal extent of the layer. 
An analysis of the convergence of penalty-finite element approxima . 

global stability problem has been discussed in a recent contribution (R 
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2. VARIATIONAL EIGENVALUE PROBLEMS FOR FLUID STABILITY 

We are concerned with the stability of motion of a viscous, incompressible heat- 
conducting fluid which occupies a bounded domain 52 c RN (IV< 3). The motion of 
the fluid is assumed to be modelled adequately when the Oberbeck-Boussinesq 
assumptions are applied to the Navier-Stokes equations for heat-conducting, 
buoyancy-driven flow [13]. The resulting set of equations then comprises the 
equation of momentum balance 

=divS+p,(l-cr(T-I”,J)g; (2.1) 

the equation of heat conduction 

~+u.VT=KV~T+Q; (2.2) 

the incompressibility condition 

div U = 0. (2.3) 

In (2.1)-(2.3), U is the velocity, T the temperature, g the gravity vector, p0 the mass 
density at reference temperature To, Q a prescribed heat source field, and K the 
thermal diffusivity. The stress tensor S is given as a function of velocity and 
pressure by 

S(U, P) = --PI + 2,u D(U), (2.4) 

where P is hydrostatic pressure, ,u is the dynamic viscosity, and 

D(U)=+(VU+VW) (2.5) 

is the deformation rate tensor. 
Equations (2.1)-(2.5) are required to hold on 0. Boundary conditions on the 

boundary r of LJ are 

(i) temperatures: prescribed temperature 

T=T, on rr, 

prescribed heat flux 

i?T/an=q, on r,, 

mixed condition 

(2.6) 

(2.7) 

aTfan+ kT=i-, on rk, (2.8) 
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where Tr u r4 u Fk = r and Tr, r,, r, are mutually disjoint, and n is the outwit 
unit normal vector. The scalar function k is known as the Biot number. 

(ii) velociry: prescribed velocity 

u=uo on r”, 

prescribed tangential surface traction and normal velocity 

(2.9) 

t . Sn = s,, U.n= u, on k- rr/. (2.10) 

The velocity-traction set of boundary conditions (2.10) is not the most generic 
possible, but the combination given above will suffice for our needs. 

Initial conditions are 

U(x, 0) = U”(x), T(x, 0) = To(x) in 52. (2.16) 

Our main interest is to investigate the stability of a solution (U, 17’, P) of 
(2. I)-(2.1 1). The general procedure will be to subject this system to an arbitrwy 
disturbance and to determine the conditions under which the disturbance will decay 
with time. Such conditions are normally expressed as bounds on the parameters for 
the problem, as will be seen. 

Suppose then that the initial conditions are disturbed so that the solution to 
(2.1)-(2.11) is now 

u + u, T+O, P%P, (2.12) 

where (u, 0,~) constitutes the disturbance. By substituting (2.12) in (2.1)-(2.11) and 
subtracting from the resulting set of equations the set describing the basic motion, 
we arrive at the set of equations for the disturbance. Before displaying this set of 
equations we first non-dimensionalise by dividing 

by 

U, 

u’, 

and the disturbance 

44 

U/d, T’, lgl, 4 8/v, 

vld2, PoV2 2; d 

m/79/1-7 
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here U’, T’, and d are characteristic magnitudes of velocity, temperature and 
length, and v = ,u/pO is the kinematic viscosity. The notation used for dimensionless 
variables is the same as that for the dimensional counterparts. 

The introduction of the non-dimensionalisation into the equations for the 
disturbance now yields the set of equations 

2 + Re((VU) u + (Vu) U) f (Vu) u = -Beg -Vp + 2 div D(u), 

~+ReVB.U+W*u +BVT.u=V2tI, 

div u = 0 

on Sz, and 

(2.13) 

(2.14) 

(2.15) 

u=Oonr,, t.S(u,p)n=O, u.n=O on r- Tr/, (2.16) 

t3=0 on Tr, W-n=0 on r,, VlJ.n+ke=O on r,, (2.17) 

and the initial conditions 

u(x, 0) = uO(x), qx, 0) = e”(x) in Sz. (2.18) 

The parameters which appear in these equations are the Rayleigh number 9, 
Reynolds number Re, and Prandtl number Pr, defined by 

(2.19) 

Equations (2.13)-(2.17) form the basis for the study of stability of the basic state. 
There are essentially two procedures for dealing with these equations: in the linear 
theory of stability, the disturbance is assumed small enough to justify the retention 
only of linear terms in (u, 0, p), while in the global theory of stability the size of the 
disturbance is not restricted. 

Linear Stability 

Equations (2.13) and (2.14) are linearised by removing the terms (Vu) u and 
VB . u; we then seek a solution of the resulting linear homogeneous set of equations 
of the form 

u(x, t) = u(x) exp(ot) 

e(x, t) = etx) exp(at) 

~(5 tl =P(x) exp(d, 

(2.20) 
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where G is in general complex. Substitution in (2.13)~(2.17) leads to the equations 

cu + Re((VU) II + (Vu) U) = -B?f?g -VP + 2 div D(u), 

Pr(ae+ReVe.u+Ve.u)$~VT.u=V*e, (2”alg 

div u = 0, 

together with boundary conditions. 
The growth or decay of the disturbance depends on the sign of the real part of u. 

If re(o) > 0 the disturbance grows with time, whereas if re(o) < 0 the disturbance 
decays and the basic flow is stable. The flow is neutrally stable if re(o) = 0. States of 
marginal stability can be one of two kinds: small disturbances can grow (or decay) 
aperiodically, or they can grow (or decay) with oscillations of increasing (or 
decreasing) amplitude. In the former case im(o) = 0 and the principle of exchange of 
stabilities is said to hold (Joseph [ 12, 131, Galdi and Straughan [7]). In the latter 
case im(g) # 0. As is customary in investigations of this kind we assume that the 
principle of exchange of stabilities holds. We further assume that the Reynolds and 
Rayleigh numbers are related by Re = @4?, where fl is a known constant; then for 
given W we can determine the smallest value of c for which (2.21) hold. The critical 
Rayleigh number of linear theory, gL, is the value of 9 for w 
re(o) = 0 (im(o) =0 also), so by setting B = 0 in (2.21) we have an eige~val~e 
problem for 8r: find u, 0, p, and %?L such that 

2 div D(U) - Vp = %!r(eg + /J(W) u + I U), 

v2e = 9&(vT. U + five. u), 

div u = 0, 
(2.22) 

in 0, and boundary conditions (2.16)-(2.17). Since the linear theory makes no 
prediction about the effects of large disturbances, clearly it gives only a sufificient 
condition for instability: if W > BL, then the basic flow is unstable. Flows for which 
99 < !%r, though judged stable by the linear theory, may be unstable to sufficiently 
large disturbances. 

With a view to constructing Galerkin approximations of this problem we 
reformulate (2.22) in weak or variational form. First we define the spaces 

v= (v = (U,) . . . . uN): ujE H’(S2), v = 0 on Tu, v . n = 0 on r-- r,>, 

Q = {f# e H’(i2): f# = 0 on r,}. 

V and Q are closed subspaces of (H’(R))N and H’(Q) and are, conseq~c~tly~ 
Hilbert spaces with inner products ( ., . ) v, (. , . )a defined by 

(U? Y)v=JQ u.v+Vu.Vvdx, 

($,e),=J e#+veajsdx. 
n 
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It is also convenient to define the product space P= Vx Q, which is a Hilbert space 
with inner product (. , *) p defined by 

(U, C)v= (u, v),+ (&d)Q, 

where U= (u, 0) and V= (v, 4). We assume for definiteness that ke L2(rk), 
g E (L2(fi))N, TE H’(Q), and that U E (H’(SZ))N. 

The pressure p may be eliminated as an unknown by introducing the penalty 
approximation (see, for example, Carey and Oden [2]): we dispense with (2.22),, 
replace p by pE = -E - ’ div u, and formulate the following penalised variational 
eigenvalue problem: find ii, E r and gLs E R! such that 

a(u,, v) + s-‘(div uE, div v) = L%?~~{c(~~, v) + e(u,, v)} for all v E V, 

b(e,, 9) = g&h, 4) +f(ee, 4> for all 4 E Q. 
(2.23) 

Here (e, .) denotes the &-inner product, and 

a: Vx If--+ R, 

b:QxQ+R, 

c:Qx V+R, 

d VxQ+R, 

e: Vx Y+ R, 

f:QxQ-R 

a(u, v) = 2 IQ D(u) * D(v) dx, 

b(&‘,&=I V@V~dx+j k@ds, 
a rk 

C(e,V)= -j$$V.gdX, 

d(v, q5) = - jO q5v *VT dx, 

e(u, v) = -p JQ [(VU) u + (Vu) U] . v dx, 

fw, 4) = -B j (ve. u) 9 dx, 
R 

are all bilinear forms. Equations (2.23) may be written more compactly if we define 
the bilinear forms 

A: Px P+ R, A(& 5) = a(u, v) + 6(&d) 

and (2.24) 

B: i7x it+ R, B(ii, 6) = c(e, V) + e(u, V) + d(u, 4) +f(e, 4). 

Then (2.23) becomes: find ii, = (u,, 0,) and BL6 such that 

A(ii,, V) + s-l(div u,, div v) = BLE B(zZ,, 6) for all V= (0, f$) +a I? (2.25) 
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It is straightforward to show that solutions of (2.25) are also solutions of the 
penalised form of (2.22) (with 2.22)3 removed and Vp replaced by --s-i div u,) and 
vice versa, assuming the solutions to have the requisite smoothness (Carey an 
Oden [2]). 

If A(., . ) and B( ., .) are symmetric then the eigenvalues of (2.25), if they exist, are 
real. Generally, though, B( ., . ) is not symmetric, as can be easily seen from (2.2 
For the general case there is no theory which gives necessary and spiciest 
conditions for the existence of real eigenvalues of (2.25), though solutions for 
particular cases or approximate solutions indicate that the system (2.25) does, in 
general, possess real eigenvalues (see Joseph [ 121) 

It is expected that ii, -+ U, WLE --f B!=, and p, -+p as E -+ 0, where pE = -z-l 
Proof of convergence is complicated, though, by the fact that B(., . ) is unsym: 
metric, and it is not pursued, though numerical experiments support the conjecture. 

Global Stability 

We start by defining the energy at time t, E(t, A., C(t)), of a disturbance C(b), 
corresponding to a given value of i > 0, a coupling parameter, by 

E(t, 2, C(t)) = 1 j Iv(t)j* + A Pr q%2(t) dx. (226) 
.Q 

We assume that v(t) E W= (w E I? div w = 01, that 4(t) E 
that E(t, 1, . ): W- R. We adopt the conventional definitions of global stability: tbe 
soEution (U, T, P) is globally stable if the energy of the disturbance goes to zero as 
t -Y 00. The time rate of change of energy is easily shown to be given by 

$ E(t, L, ii(t))= -Ji(ii(t)) +92 Ij.(ii(t))t (2.27) 

assuming that ii(t) is a solution of (2.13)-(2.18), where 

J,: ?v-+ R, Jn(6) = jQ 2D(v) . D(v) + i IVqbi 2 dx t- irk kti2 ds, 

I,: iv--+ R, I,(U)= - s */3V~L(t)v+qsv~( 

and L(t) = $(Vu(t) + (Vu(t))“). The significance of (2.27) follows from the followin 
theorem [20]. 

THEOREM 2.1. Suppose that J is p-elliptic, that is, there exists a constant 
such that 



100 REDDYAND VOYi? 

Suppose further that there are constants A,, A, > 0 and Pr,, Pr, > 0 such that 
O<,I,<1<& andO<Pr,<Pr,<Pr,. Set 

BA = inf(JA(%)/IL(@): VE IV’>. (2.30) 

Then there is a constant y > 0 such that 

(2.31) 

provided that B(s) -C CA?* for 0 < s < t. If 95’(t) < BA for all t then E(t, 1, ii(t)) -+ 0 as 
t--t co and the Jlow is asymptotically stable. 

According to Theorem 2.1, if we can find a number 9A E (0, co) defined by (2.30), 
then global asymptotic stability is guaranteed when 9 < ~8~. The exercise may be 
repeated for different values of 1, in order to find the optimum value of 1, i.e., the 
value of 1 which maximises 9$. Suppose that this maximum is gmax: then we seek 
L!&,,, > 0, defined by 

(2.32) 

The question of existence of such a number is partially resolved in the following 
result (Shir and Joseph [ZO], Reddy [ 171). 

THEOREM 2.2. (a) For each L > 0 there exists a minimiser &?A, dejmed by (2.30). 
This minimiser is characterised by the least eigenvalue of the variational eigenvalue 
problem 

iiE cv, J;(u) =9&.&(U), (2.33) 

where S(U): W-P Iw is the Gateaux derivative of J at U (I’(S) is defined similarly). 
(b) There exists a unique 1~ co and 9&,x -C co such that 

a ,,,=9212~A for all L 15 Iw. 

Remark. The proof that I > 0 is an open problem, a point not made clear by 
Shir and Joseph [20]. We also observe, from (2.31), that if ~4’~ < 0, then asymptotic 
stability for arbitrarily large Rayleigh numbers is guaranteed. 

Both the functionals Jn(.) and I,(* ) are Gateaux-differentiable, and (2.33) is 
equivalent to the following problem: find U E F and BL E Iw such that 

a(u, v) = BA{ g(fA v) + 0, VI>, VE w, 

(2.34) 
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where the bilinear forms g( ., .) and h( +, .) have been defined by 

g:QxV+R, Ad, v) = - &Q (g + JV?-(t)) -dv, 

h: vx v-+ R, h(u, v) = -/? ja u. L(t) v. 

As with (2.23) we may write Eqs. (2.34) more compactly if we define bilinear forms 
A(*, .) and B(,, .) by 

- - 
A: vx v-+ R, d(U,V) = a(u, v) + 1 b(0, f#), 
- - 
B: vx v+ R, &ii, 3) = g(#, u) + g(B, v) + h(u, v). 

(2.35) 

Indeed, we have 

A@, 6) = J;(G) v, 
B(ti, 5) =&(U) ii 

Then the problem is: find U E I7 and $%?A E R such that 

A(zYi, 6) = Bl B(ii, V), tie F. (2.36) 

We note that, unlike in problem (2.25), both A and B are symmetric bilinear 
forms, so that gA is always real. The optimal value gm,, of %?A is found from 
elementary calculus, by setting dS%?,JdA = 0. 

The problem may be posed on the larger space 7 if we introduce the pressure ps a 
Lagrange multiplier, and consider instead the problem of finding U E P, p E P, an 
BA E R such that 

A(ii,ti) - (p, div v) = .%?AB(ii, 6) GE i;;, 

(q, div u) = 0 4EP, 
(2.37) 

where 

P= qE&(!S):f qdx=O I 
R I 

with norm 

(2.38) 

(2.39) 

Furthermore, we may remove the pressure as a variable by introducing a 
penalisation (Carey and Oden [a]), that is, by introducing a small compressibility 
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and approximating the pressure by pE = -E-I div II,. Then we seek u, E V, 8, E Q, 
and &YA, E R such that 

A(&, U) + a-‘(div u,, div v) = ~8~~ B(z?,, V), ITS v. (2.40) 

The relationship of (2.40) to (2.37) or (2.36) is given in the following result (R&y 
C171). 

THEOREM 2.3. Suppose there is a constant a > 0 such that 

4lqllo d sup 
l(q, div VII for all q E P. 

v E v/i01 IIVII v 

Then there is a constant C > 0, independent of E, such that 

In other words, the solution to the penalised problem converges to that of the 
original problem as E -+ 0. 

We observe that problems (2.25) and (2.40) coincide when the basic solution has 
zero velocity (U = 0), A = 1, and VT = g. This is in fact the situation for the classical 
Benard problem (Joseph [ 131): here &?rE = 9&, and so we have a necessary 
and sufficient condition for stability: the flow is globally stable if and only if 
92 < 9qE = 9qa. 

3. FINITE ELEMENT APPROXIMATIONS 

We are interested in constructing finite element approximations of problems 
(2.25) and (2.40), and to this end define a family of finite-dimensional subspaces 
VhihhE(O,l) of V, using conforming finite elements. We assume that Q is polygonal, 
and that ( FA} is generated by regular refinements of the mesh U,“= 1 G5, = 0; here h 
is the mesh parameter. The approximation of the penalised problems are: 

(a) linear stability find ii: E Fh and ~8;~ E R’ such that 

A($, 5”) + s-‘I[(div ut)(divvh)] = WL, B(Gt, 6”) for all ghE i;ih (3.1) 

and 

(b) global stability find ii,” E V,, and Wl;, E R such that 

A(C,h, 17~) + s-‘I[(div ut)(div vh)] = S?;,B(Ut, 6”) for all tih~ i;ih. (3.2) 

Here I[ (. )( .)I denotes numerical quadrature: for f, g E C(D), 

(3.3) 
e=l \k=i / 
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where xi and w;; are respectively quadrature points and weights in element e. For 
reasons of stability we are generally forced to underintegrate the term involving E - ’ 
(Carey and Oden [2]), and so we do not use the conventional L,-inner product 
(3.1) and (3.2). The choice of integration scheme (3.3) defines implicitly a fini 
dimensional counterpart Ph of the space P of pressures. 

Once again we are concerned with the existence of solutions to (3.1) and (3.2), 
and with the question of convergence of finite element approximations, Since both 
problems amount to finite-dimensional (matrix) eigenvalue problems we are 
assured of the existence of N eigenvalues and N corresponding nctions 
(N= dim vh). Problem (3.1) has complex eigenvalues, in general, it will 
have at least one real eigenvalue if N is odd. Problem (3.2) has an increasi 
sequence of real eigenvalues. But as in the case of the continuous proble 
are no guarantees that the smallest eigenvalues will be positive, since A 1 
positive-definite matrix, but not B. 

For the global stability problem we have the following convergence result ( 
C1V). 

THEOREM 3.1. For ~~E(H~(SZ))~+~ and p E HI(Q), andfor small enough h, there 
is a constant C > 0 independent of h such that, for given A > 0, 

4. EXAMPLES AND NUMERICAL RESULTS 

We consider a rectangular container of fluid heated from below and internally” 
The fluid is assumed stationary, so that U = 0. It is assumed that the extension in 
the z-direction is sufficiently large so that the three-dimensional problem can be 
reduced to one of two dimensions, in the x - y plane. The width and depth of the 
layer are denoted by 1 and d, respectively, and we set the characteristic length k’ 
equal to d. 

Let the unit vector i point in the direction of y increasing. We consider situations 
in which the temperature gradient, VT, and the dimensionless gravity field, g are 
parallel vectors. For our problem we take g as a constant vertical gravity field, so 
that 

VT = i dT/dy and g= -i 

(recall that g is dimensionless). As in Sparrow et al. [21] we consider an internal 
heat source which gives rise to a quadratic temperature distribution which depen 
only on y, and which may be written in dimensional variables as 

T= - &S/K) y* + Ay + I-8, 
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where s is the internal heat-source intensity and IC is the thermal conductivity. If we 
define the heat-source parameter H, by 

Hs = f(h) d%C - T,), 

where T, and T2 are the temperatures at the bottom and top, respectively, of the 
layer, and choose the characteristic temperature T’ such that 

T’= (T, - T,)[H,+ 11, 

then the dimensionless temperature gradient is easily shown to be 

(4.2) 

The Binard Problem 

In the Benard problem the temperature distribution of the motionless state is 
linear with no internal heat sources present, so that H, = 0 and 

VT.g= -i. 

The critical stability limits &?= and BA for the linear and global stability theory 
coincide with il = 1. A necessary and sufficient condition for global stability is thus 
.TZ%<LS!, =&?L. 

The finite element approximation to the eigenvalue problem (3.1) or (3.2) is 

(K + l/&H) a = 92: Ma, (4.3) 

where K is the stiffness matrix, H is the matrix arising from the penalty term, 
M is the mass matrix, Wq is the lowest eigenvalue, and a is the corresponding 
eigenvector. 

Nine-noded biquadratic elements were used with 3 x 3 Gauss quadrature for the 
integrals contributing to the stiffness and mass matrices. For reasons of stability the 
integrals contributing to the penalty matrix were computed approximately using 
reduced 2 x 2 integration; the nine-noded element with reduced integration is only 
conditionally stable, but in practice it is quite robust provided that the data is 
sufficiently smooth (see, for example, Oden, Kikuchi, and Song [15-J). No problems 
of instability were encountered in generating the results which follow. 

The eigenvalue problem (4.3) was solved by using the subspace iteration method 
[ 11: in this algorithm one computes the projection of the stiffness and mass 
matrices onto a subspace and then iterates, using the generalised Jacobi technique, 
to obtain all the eigenvalues of the subspace simultaneously. In this way the size of 
the problem is considerably reduced. Though it is the least eigenvalue which is of 
greatest interest here, in many instances the first two eigenvalues were computed 
(for example, in the results of Figs. 4.1) in order better to locate the transition from 
one mode to a new mode, as the ratio l/d was increased. 
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FIG. 4.1. Critical Rayleigh number versus length-depth ratio for B6nard problem, for various 
velocity boundary conditions at the top and bottom surfaces: (a) rigid top and bottom; (b) free top, 
rigid bottom; (c) free top and bottom. The number of convection cells at onset of stability is denoted 
by n. 

Extensive numerical experiments indicated that a value of E of 1W4 gave eigen- 
values which differed from those corresponding to E = 10m3 only in the fourth 
decimal place (for eigenvalues in the range approximately 10 to 50). The value 
E = IO-4 was accordingly adopted throughout the study. 

Results were obtained for rectangular containers having length-depth ratios in 
the range 1 to 10. For Z/d ratios in the range 1 < I/d< 4 it was found necessary to 
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use square elements of dimensions ix $ (corresponding to unit depth d) while for 
ratios in the range 4 d I< 10 elements of depth $ and length i were used (again 
corresponding to d = 1). These relatively fine meshes gave eigenvalues which 
differed only in the fourth decimal place, when compared with results obtained 
using elements of dimension 1 x 4 and 4 x 1, respectively. 

All numerical results given in this section are obtained from the penalised finite 
element problems, but for simplicity we henceforth omit subscripts E and h. 

Consider first a fluid layer with a fixed temperature at both upper and lower 
bounding surfaces. We investigate the following velocity boundary conditions: 

(a) the upper and lower bounding surfaces are both rigid, 
(b) the lower surface is rigid while the upper surface is free, and 
(c) the upper and lower surfaces are free (in the absence of surface tension 

this condition does not correspond to a real physical situation but may be of 
theoretical interest). 

We require that the side walls be rigid (u =0) and perfect insulators (%/ax = 0) 
throughout this study. 

The critical Rayleigh numbers for the motionless solution to the Benard problem 
with rigid walls on all sides are presented in Fig. 4.la for Z/d in the range 1 to 10. 
The results for the rigid-free case are presented in Fig. 4.lb and for the free-free 
case in Fig. 4.1~. Results obtained by Hall and Walton [S], Jackson and Winters 
[IS], and Sparrow et al. [21] are presented for comparison. Jackson and Winters 
computed critical Rayleigh numbers using a mixed finite element method with six- 
node quadratic triangles to model velocities and temperature, and three-node linear 
triangles to model pressure. Critical Rayleigh numbers were obtained by Hall and 
Walton [S] for the free-free case and various geometries. Results obtained by 
Sparrow et al. include rigid-rigid and rigid-free horizontal bounding surfaces but 
are for the case of an infinitely long container. 

There is reasonably good corelation with the results of Jackson and Winters [9] 
and of Hall and Walton [S]. The results of the former were for Z/d in the range 
1 < Z/d < 4, and our results indicate that the trend observed in this range continues, 
as Z/d increases to a value of 10. That is, the envelope of least eigenvalues is a 
piecewise smooth curve, each smooth section of the curve corresponding to a 
particular mode number (number of convection cells at onset of instability). The 
mode number increases discretely with increase in l/d, and the critical Rayleigh 
number appears to converge (in Figs. 4.la, b) to the value obtained by Sparrow et 
al. [21] for an infinitely long container. It is worth noting that, for the free-free 
case, Drazin [IS] has in fact shown that W(Z) > a(co) and W(Z) + W( co) as Z-+ co, 
where B(Z) is the critical Rayleigh number for a container of length Z, and .?3( 0~) ) for 
a container of infinite length (see also Hall and Walton [S]). 

We now investigate the stability of a fluid for a broad range of temperature 
boundary conditions. These include a fixed temperature (0 = 0) and fixed heat flux 
(dO/dy = 0) at the lower bounding surface and a general convective exchange at the 
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FIG. 4.2. Critical Rayleigh number versus Biot number k at upper surface for the BBnard problem, 
with I/d= 4: (a) fixed temperature at lower surface; (b) fixed heat flux at lower surface. 

upper surface (&/dy + k0 = 0). The last condition includes fixed temperature 
(k + co) and fixed heat flux (k + 0) as special cases. We require that the lower 
bounding surface of the fluid layer be rigid. The upper surface may either be a free 
surface or a rigid surface. 

For each Biot number k there is a critical Rayleigh number below which t 
motionless state is stable. The critical Rayleigh numbers marking the onset 
instability for a fluid layer with l/d = 4 are presented in Figs. 4.2. In Fig. 4.2a t 
lower surface is at a fixed temperature and in Fig. 4.2b the lower surface is at a 
fixed heat flux. Also shown are the results obtained by Sparrow et al. 1213 for an 
infinitely long fluid layer. On each of the graphs there are two curves; the curve 
corresponding to the free upper surface is referred to the left-hand ordinate scale; 
the curve corresponding to a rigid upper surface is referred to the ri 
ordinate scale. 

I/d 
30 I I , 

0 2 4 5 8 10 

FIG. 4.3. Critical Rayleigh number versus length-depth ratio for the Bknard problem, with fixed 
temperature at the lower surface, for k = 1 and k = 10 at upper surface. 
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From Figs. 4.2a and b it is seen that, for a given velocity boundary condition at 
the upper surface, the critical Rayleigh number increases monotonically with 
increasing Biot number k. Thus, the most stable situation corresponds to a fixed 
temperature (k + co), a trend which is in accord with the result for an infinitely 
long container (Joseph and Shir [14]). 

To show convergence to the results of Sparrow et al. as I-+ co for the rigid-rigid 
case with fixed temperature at the lower surface, a plot of critical Rayleigh number 
versus l/d is shown in Fig. 4.3. There are two curves; one corresponds to an upper 
surface with k = 1 and the other corresponds to an upper surface with k = 10. Both 
curves approach the limits obtained by Sparrow et al. as Z/d increases. 

Non-linear Temperature Distribution 

We now investigate how the stability of a fluid in the motionless state is affected 
by a variation from linearity of the temperature distribution. The temperature 
distribution is nonlinear due to an internal heat source in the fluid layer. The 
temperature gradient is given by (4.2): when H, = 0 we recover the case of linear 
temperature distribution (the BCnard problem), so that the magnitude of H, is a 
rough measure of the degree of nonlinearity. When H, # 0 the critical stability limits 
for the global and linear theory, ~9~ and gL, do not coincide, and for .9? in the range 
L%?. < 9 < 9Q solutions exist whose energy does not decay even though the stability 
criterion of the linear theory is satisfied. Such conditions are called subcritical 
(Joseph [ 131). 

In order to compare results obtained in this section with those of the previous 
section we divide the critical Rayleigh number corresponding to a nonlinear 
temperature distribution by a factor (H, + 1) ‘I2 This is necessary since the critical . 
Rayleigh number corresponding to a linear temperature distribution is given by 

where T’ = ( T1 - T2) is the temperature difference across the fluid layer. However, 
for the case when we have a nonlinear temperature distribution, T’ has been 
defined by 

T’= (T, - T,)(H,+ 1). 

Thus, for H, > 0 we have 

We first calculate the critical values of the Rayleigh number for the linear 
stability theory. Consider fluid layers with I/d= 1 and 10, and the following 
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FIG. 4.4. Critical Rayleigh number versus heat-source parameter, according to linear theory. 

boundary conditions: horizontal bounding surfaces both rigid and isothermal, and 
vertical bounding surfaces rigid and perfect insulators. The critical Rayleigh 
numbers, 9$, are shown in Fig. 4.4 for values of heat-source parameter H, in the 
range 1 to 100. The results obtained by Sparrow et al. [21] for an infinitely long 
layer are also shown for comparison. The critical Rayleigh number for HS = 1 is 
very close to that corresponding to a linear temperature distribution and, as H, 
increases the critical Rayleigh number decreases monotonically. Thus, the nonlinear 
temperature has a destabilising effect on the fluid. Comparing the three sets of 
results, we see that the curves differ by an almost uniform amount and we expect 
that this will approach zero as the ratio l/d approaches infinity. 

A 
II I I 

2 4 6 8 10 

FIG. 4.5. Critical Rayleigh number versus coupling parameter i, with i/d= 10, accordin:! to global 
theory. 
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FIG. 4.6. Critical Rayleigh number versus heat-source parameter, with l/d= 10, for the linear and 
global theories. 

We next obtain critical values of the Rayleigh number for the global stability 
theory. For this theory stability is guaranteed if W < ~33~ for a fixed value of H, and 
fixed ~33 > 0. A set of minimum eigenvalues gL are found for different L keeping H, 
fixed. The value 9&,, of W which produces the maximum value of %?A determines 
the critical stability limit 9?,,,,X. The variation of Se, with il is given in Fig. 4.5 for 
values of H, in the range 0 to 100, for the case Z/d= 10. The dashed line gives the 
optimal values LZ&,, corresponding to the range of values of H,. In Fig. 4.6 the 
critical Rayleigh numbers, BL and BmaX, of the linear and global theory are 
compared, also for l/d = 10. When H, = 0, BL = .C&,,,,, and no subcritical 
instabilities exist. For H, > 0 the critical Rayleigh numbers for the energy theory are 
slightly less than those given by the linear theory, the difference increasing from 
zero with the magnitude of the heat-source intensity. The curve corresponding to 
the linear theory defines a boundary above which the flow is certainly unstable. The 
curve corresponding to the energy theory defines a boundary below which the flow 
is certainly stable. The region between these two curves is open to subcritical 
instabilities. Results ,obtained by Joseph and Shir [ 141 and Sparrow et al. [21] for 
the infinitely long container are also reproduced. 

Figure 4.6 indicates that variation in critical values of Rayleigh number with 
length-depth ratio may not be very marked. This is further borne out by the results 
shown in Fig. 4.7, where the critical Rayleigh number is plotted against I/d. It 
should be noted that these curves, like those in Fig. 4.1, are piecewise smooth, but 
beyond a value of l/d= 4 it is not possible to show their piecewise nature on a 
graph of this scale. 
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FIG. 4.7. Critical Rayieigh number versus length-depth ratio for linear and global theories. 

5. CONCLUDING REMARKS 

The penalty-finite element method is evidently well suited to the generation of 
approximate results for eigenvalue problems arising in fluid stability. It is stable 
(provided one chooses the element and reduced integration scheme carefully), 
economical (in the sense that pressure is not present as a variable), accurate, and 
rests on a firm theoretical basis. A number of issues which have not been addressed 
here could very well be resolved using this method: for example, problems involving 
more complex domains, and three-dimensional problems. These must, howev~r~ 
await future study. 
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